Respuesta :
Answer: Option (4) is the correct answer.
Explanation:
Heat of vaporization is defined as the heat energy which is necessarily added to a liquid substance in order to transform the quantity of the substance into a gas.
For example, in [tex]H_{2}O[/tex] there will be presence of strong hydrogen bonding and in order to break this bond high amount of heat energy is required.
Whereas [tex]H_{2}[/tex], [tex]F_{2}[/tex] and [tex]SiF_{4}[/tex] are all covalent compounds which are bonded together by Vander waal forces. As these forces are weak in nature hence, they require less amount of heat energy to convert into vapor state.
Hence, they have low value of [tex]\Delta H_{vap}[/tex]. Also, Ar is a noble gas and it has only Vander waal forces. So, it will also have low value of [tex]\Delta H_{vap}[/tex].
Therefore, we can conclude that out of the given options [tex]H_{2}O[/tex] have the highest [tex]\Delta H_{vap}[/tex].
4. H₂O
Enthalpy of vaporization
The enthalpy of vaporization (symbol ∆Hvap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas.
In terms of formula it can be written as:
[tex]\Delta H_\mathrm{vap}=\Delta U_\mathrm{vap}+p \Delta V[/tex]
Lets look at all the options one by one:
1. In case of H₂O molecule, there is a strong hydrogen bonding thus greatest energy is required to break this bonding.
2. While in case of H₂, F₂ and SiF₄ molecules are all covalent compounds that are bonded via weak vanderwaal forces thus it needs lesser heat energy to convert into vapor state.
3. Noble gases usually have weak vanderwaal forces thus Ar has lower ∆Hvap.
So, we can conclude that H₂O has the the highest ΔHvap.
Learn more:
https://brainly.com/question/10345528