Answer:
[22.57 ± 2.776]
Step-by-step explanation:
Hello!
You have the 95% Confidence Z-interval (21.182;23.958), the mean X[bar]= 22.57 and the sample size n=25.
The formula for the Z interval is
[X[bar] ± [tex]Z_{1-\alpha /2} *( \frac{Sigma}{\sqrt{n} } )[/tex]]
The value of Z comes from tha standard normal table:
[tex]Z_{1-\alpha /2} = Z_{0.975}= 1.96[/tex]
The semiamplitude (d) or margin of error (E) of the interval is:
E or d= (Upperbond- Lowerbond)/2 = (23.958-21.182)/2 = 2.776
[X[bar] ± E]
[22.57 ± 2.776]
I hope it helps!