Respuesta :

Answer:

The option [tex]\frac{(x+5)(x+2)}{x^3-9x}[/tex] is correct

The difference of the given expression is

[tex]\frac{2x+5}{x^2-3x}-(\frac{3x+5}{x^3-9x})-({\frac{x+1}{x^2-9})=\frac{(x+5)(x+2)}{x^3-9x}[/tex]

Step-by-step explanation:

Given expression is [tex]\frac{2x+5}{x^2-3x}-(\frac{3x+5}{x^3-9x})-({\frac{x+1}{x^2-9})[/tex]

To find the difference of the given expression as below :

[tex]\frac{2x+5}{x^2-3x}-(\frac{3x+5}{x^3-9x})-({\frac{x+1}{x^2-9})[/tex]

[tex]=\frac{2x+5}{x(x-3)}-(\frac{3x+5}{x(x^2-9)})-({\frac{x+1}{x^2-9})[/tex]

[tex]=\frac{2x+5}{x(x-3)}-(\frac{3x+5}{x(x^2-3^2)})-({\frac{x+1}{x^2-3^2})[/tex]

[tex]=\frac{2x+5}{x(x-3)}-(\frac{3x+5}{x(x-3)(x+3)})-({\frac{x+1}{(x-3)(x+3)})[/tex]  

( using the formula [tex]a^2-b^2=(a+b)(a-b)[/tex] )

[tex]=\frac{2x+5(x+3)-(3x+5)-x(x+1)}{x(x-3)(x+3)}[/tex]

[tex]=\frac{2x^2+6x+5x+15-3x-5-x^2-x}{x(x-3)(x+3)}[/tex] (adding the like terms)

[tex]=\frac{x^2+7x+10}{x(x^2-9)}[/tex] ( by factoring the quadratic polynomial )

[tex]=\frac{(x+5)(x+2)}{x^3-9x}[/tex]

Therefore [tex]\frac{2x+5}{x^2-3x}-(\frac{3x+5}{x^3-9x})-({\frac{x+1}{x^2-9})=\frac{(x+5)(x+2)}{x^3-9x}[/tex]

Therefore the difference of the given expression is

[tex]\frac{(x+5)(x+2)}{x^3-9x}[/tex]

Therefore option [tex]\frac{(x+5)(x+2)}{x^3-9x}[/tex] is correct

Answer:

A

Step-by-step explanation: