Respuesta :

The function which represents the reflection over x-axis is the attached graph.

Step-by-step explanation:

Given that [tex]f(x)=\sqrt{x}[/tex]

To reflect a function over x-axis, we need to multiply the function by -1.

Thus, to reflect f(x) over x-axis, multiply f(x) by -1.

Thus, the new function g(x) is given by

[tex]\begin{aligned}g(x) &=f(x) *-1 \\&=-f(x) \\g(x) &=-\sqrt{x}\end{aligned}[/tex]

For [tex]x=0[/tex]⇒[tex]g(x)=0[/tex]

For [tex]x=1[/tex]⇒[tex]g(x)=-1.41[/tex]

For [tex]x=4[/tex]⇒[tex]g(x)=-2[/tex]

Thus, the reflection of f(x) over x-axis is [tex]g(x)=-\sqrt{x}[/tex]

Ver imagen arjunrv

Answer: Last table.

The graph of the function [tex]f(x)= \sqrt{x}[/tex] is image 1.

After the reflection over the x-axis we get image 2.

The equation of the reflection over the x-axis is [tex]f\left(x\right)=-\sqrt{x}[/tex]

The last table corresponds to the reflection.

Learn more: https://brainly.com/question/1214333

Ver imagen Cetacea
Ver imagen Cetacea
Ver imagen Cetacea