Answer:
B
Step-by-step explanation:
If point [tex]O(x_O,y_O)[/tex] divides the segment CD with endpoints at [tex]C(x_C,y_C)[/tex] and [tex]D(x_D,y_D)[/tex] in the ratio [tex]m:n,[/tex] then
[tex]x_O=\dfrac{nx_C+mx_D}{m+n}\\ \\y_O=\dfrac{ny_C+my_D}{m+n}[/tex]
In your case,
[tex]x_C=-4\\ \\y_C=3\\ \\x_D=8\\ \\y_D=-1\\ \\m:n=2:3,[/tex]
then
[tex]x_O=\dfrac{3\cdot (-4)+2\cdot 8}{2+3}=\dfrac{-12+16}{5}=\dfrac{4}{5}\\ \\y_O=\dfrac{3\cdot 3+2\cdot (-1)}{2+3}=\dfrac{9-2}{5}=\dfrac{7}{5}[/tex]