Answer:
The required probability is 0.0391.
Step-by-step explanation:
Consider the provided information.
The percent of people with blue eyes is 32%
Thus, p = 32% = 0.32
The percent of people with non blue eyes is 100%-32%=68% = 0.68
q = 68% = 0.68
We need to determine the probability that exactly 9 of them will have blue eyes if 17 are selected.
Thus, n=17 and r=9
Use the formula of binomial distribution: [tex]P(r) = ^nC_r p^r q^{n-r}[/tex]
Substitute the respective values in the above formula.
[tex]P(r=9) = ^{17}C_9 \times(0.32)^9 \times 0.68^{17-9}[/tex]
[tex]P(r=9) = \frac{17!}{9!8!} \times(0.32)^9 \times 0.68^{8}[/tex]
[tex]P(r=9) \approx0.0391[/tex]
Hence, the required probability is 0.0391.