175410
contestada

Which equation is equivalent to log Subscript 3 Baseline (x + 5) = 2? 3 squared = left-bracket log Subscript 3 Baseline (x + 5) right-bracket cubed 2 cubed = left-bracket log Subscript 3 Baseline (x + 5) right-bracket squared 3 squared = x + 5 2 cubed = x + 5

Respuesta :

The correct option is right-bracket squared 3 squared =x+5

Step-by-step explanation:

The equation is [tex]\log _{3}(x+5)=2[/tex]

Option a: [tex]\log _{3}(x+5)=3^{2}[/tex]

This is not possible because using logarithmic rule, if [tex]\log _{a} b=c[/tex] then [tex]b=a^{c}[/tex]

Hence, option a is not equivalent to [tex]\log _{3}(x+5)=2[/tex]

Option b: [tex]\log _{3}(x+5)=2^{3}[/tex]

This is not possible because using logarithmic rule, if [tex]\log _{a} b=c[/tex] then [tex]b=a^{c}[/tex]

Hence, option b is not equivalent to [tex]\log _{3}(x+5)=2[/tex]

Option c: [tex]x+5=3^{2}[/tex]

This is possible because using logarithmic rule, if [tex]\log _{a} b=c[/tex] then [tex]b=a^{c}[/tex]

Hence, option c is equivalent to [tex]\log _{3}(x+5)=2[/tex]

Option b: [tex]x+5=2^{3}[/tex]

This is not possible because using logarithmic rule, if [tex]\log _{a} b=c[/tex] then [tex]b=a^{c}[/tex]

Hence, option b is not equivalent to [tex]\log _{3}(x+5)=2[/tex]

Thus, the correct option is c: [tex]x+5=3^{2}[/tex]

Hence, the equation [tex]x+5=3^{2}[/tex] is equivalent to [tex]\log _{3}(x+5)=2[/tex]

Answer:

for those seeking a simplified answer, Its c on edge

Step-by-step explanation: