....................

Answer:
Option A) [tex]-6r^2s^4t^3[/tex] is correct
Therefore the result is [tex]\frac{18r^4s^5t^6}{-3r^2st^3}=-6r^2s^4t^3[/tex]
Step-by-step explanation:
Given expression is [tex]\frac{18r^4s^5t^6}{-3r^2st^3}[/tex]
To find the result of the given expression:
That is solve the fractional expression as below:
[tex]\frac{18r^4s^5t^6}{-3r^2st^3}[/tex]
[tex]\frac{18r^4s^5t^6}{-3r^2st^3}=\frac{-6r^4s^5t^6}{r^2st^3}[/tex]
[tex]=-6r^4s^5t^6.r^{-2}s^{-1}t^{-3}[/tex] ( using the properties [tex]\frac{1}{a^m}=a^{-m}[/tex] and [tex]a^m.a^n=a^{m+n}[/tex])
[tex]=-6r^{4-2}s^{5-1}t^{6-3}[/tex]
[tex]=-6r^2s^4t^3[/tex]
Therefore [tex]\frac{18r^4s^5t^6}{-3r^2st^3}=-6r^2s^4t^3[/tex]
Therefore the result is [tex]-6r^2s^4t^3[/tex]
Therefore option A) [tex]-6r^2s^4t^3[/tex] is correct