Respuesta :

gmany

Answer:

[tex]\large\boxed{y=\dfrac{1}{4}x^2-x-4}[/tex]

Step-by-step explanation:

The equation of a parabola in vertex form:

[tex]y=a(x-h)^2+k[/tex]

(h, k) - vertex

The focus is

[tex]\left(h,\ k+\dfrac{1}{4a}\right)[/tex]

We have the vertex (2, -5) and the focus (2, -4).

Calculate the value of a using [tex]k+\dfrac{1}{4a}[/tex]

k = -5

[tex]-5+\dfrac{1}{4a}=-4[/tex]        add 5 to both sides

[tex]\dfrac{1}{4a}=1[/tex]           multiply both sides by 4

[tex]4\!\!\!\!\diagup^1\cdot\dfrac{1}{4\!\!\!\!\diagup_1a}=4[/tex]

[tex]\dfrac{1}{a}=4\to a=\dfrac{1}{4}[/tex]

Substitute

[tex]a=\dfrac{1}{4},\ h=2,\ k=-5[/tex]

to the vertex form of an equation of a parabola:

[tex]y=\dfrac{1}{4}(x-2)^2-5[/tex]

The standard form:

[tex]y=ax^2+bx+c[/tex]

Convert using

[tex](a-b)^2=a^2-2ab+b^2[/tex]

[tex]y=\dfrac{1}{4}(x^2-2(x)(2)+2^2)-5\\\\y=\dfrac{1}{4}(x^2-4x+4)-5[/tex]

use the distributive property: a(b+c)=ab+ac

[tex]y=\left(\dfrac{1}{4}\right)(x^2)+\left(\dfrac{1}{4}\right)(-4x)+\left(\dfrac{1}{4}\right)(4)-5\\\\y=\dfrac{1}{4}x^2-x+1-5\\\\y=\dfrac{1}{4}x^2-x-4[/tex]

Answer:

yes

Step-by-step explanation: