Respuesta :

The first five terms of the sequence is 1, –2, 4, –8, 16.

Solution:

Given explicit formula is [tex]a_n=(-2)^{n-1}[/tex].

To find the first five terms of the sequence, substitute n = 1, 2, 3, 4 and 5 in the given explicit formula.

For n = 1, we get

[tex]a_1=(-2)^{1-1}[/tex]

    [tex]=(-2)^{0}[/tex]

    = 1  (Using exponent rule [tex]a^0=1[/tex])

For n = 2, we get

[tex]a_2=(-2)^{2-1}[/tex]

   [tex]=(-2)^{1}[/tex]

   [tex]=-2[/tex]

For n = 3, we get

[tex]a_3=(-2)^{3-1}[/tex]

    [tex]=(-2)^{2}[/tex]

    = 4

For n = 4, we get

[tex]a_4=(-2)^{4-1}[/tex]

    [tex]=(-2)^{3}[/tex]

    = –8

For n = 5, we get

[tex]a_5=(-2)^{5-1}[/tex]

   [tex]=(-2)^{4}[/tex]

   = 16

Hence, the first five terms of the sequence is 1, –2, 4, –8, 16.