Please answer! It would be appreciated if work is also shown!

Quantity of paint left = [tex]\frac{389}{480}[/tex] gallons
Solution:
Quantity of yellow paint = [tex]1\frac{1}{5}=\frac{6}{5}[/tex] gallons
Quantity of green paint = [tex]1\frac{1}{6}=\frac{7}{6}[/tex] gallons
Quantity of blue paint = [tex]\frac{7}{8}[/tex] gallons
Quantity of paint used = [tex]\frac{3}{4}[/tex] gallons of each paint
Quantity of paint left = [tex]1-\frac{3}{4}=\frac{1}{4}[/tex] gallons of each paint
Quantity of paint left = [tex](\frac{6}{5}+\frac{7}{6}+\frac{7}{8})\times\frac{1}{4}[/tex]
Taking LCM for 5, 6, 8, we get LCM = 120
[tex](\frac{6}{5}+\frac{7}{6}+\frac{7}{8})\times\frac{1}{4}=(\frac{144}{120}+\frac{140}{120}+\frac{105}{120})\times\frac{1}{4}[/tex]
[tex]=(\frac{389}{120})\times\frac{1}{4}[/tex]
[tex]=\frac{389}{480}[/tex]
Hence, Mark will have [tex]\frac{389}{480}[/tex] gallons of paint left after painting the mural.