Respuesta :

gmany

Step-by-step explanation:

The point-slope form of an equation of a line:

[tex]y-y_1=m(x-x_1)[/tex]

m - slope

(x₁, y₁) - point on a line

We have

[tex](-6,\ 3)\to x_1=-6,\ y_1=3,\ m=\dfrac{5}{2}[/tex]

Substitute:

[tex]y-3=\dfrac{5}{2}(x-(-6))\\\\y-3=\dfrac{5}{2}(x+6)[/tex]

Convert to the slope-intercept form

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

[tex]y-3=\dfrac{5}{2}(x+6)[/tex]         use the distributive property

[tex]y-3=\dfrac{5}{2}x+\dfrac{5}{2\!\!\!\!\diagup_1}\cdot6\!\!\!\!\diagup^3[/tex]

[tex]y-3=\dfrac{5}{2}x+15[/tex]           add 3 to both sides

[tex]y=\dfrac{5}{2}x+18[/tex]

Convert to the standard form:

[tex]Ax+By=C[/tex]

[tex]y=\dfrac{5}{2}x+18[/tex]              multiply both sides by 2

[tex]2y=5x+36[/tex]              subtract 5x from both sides

[tex]-5x+2y=36[/tex]          change the signs

[tex]5x-2y=-36[/tex]