contestada

At 298 K, the Henry's law constant for oxygen is 0.00130 M/atm. Air is 21.0% oxygen.
1. At 298 K, what is the solubility of oxygen in water exposed to air at 1.00 atm?

Respuesta :

Answer:

0.000273 M

Explanation:

Henry's states that at constant temperature the amount of a gas that dissolves in a liquid is directly proportional to the partial pressure in of that gas in equilibrium with that liquid.

Pressure of Oxygen = mole fraction of Oxygen × 1.00 atm

Mole fraction Oxygen = 21/100 × 1.00atm = 0.21 atm

Molar solubility of Oxygen = KH × PO2 = 0.0013 × 0.21 = 0.000273 M

The amount of a gas that dissolves in a liquid is proportional to the partial pressure of the gas above the liquid. Solubility of oxygen in water exposed to air at 1.00 atm is 0.000273 M.  

Henry's Law:

It states that at constant temperature the amount of a gas that dissolves in a liquid is proportional to the partial pressure of the gas above the liquid.

C = k P

Where,

C = concentration of a dissolved gas

k = Henry's Law constant = 0.0013 M/atm.

P = partial pressure of the gas = [tex]\bold {\dfrac {21}{100} \times 1.00\ atm = 0.21\ atm}[/tex]

 

Put the values in the formula,

[tex]\bold {C = 0.0013 \times 0.21 = 0.000273\ M }[/tex]

Therefore, solubility of oxygen in water exposed to air at 1.00 atm is 0.000273 M.

To know more about Henry's Law,

https://brainly.com/question/18987224