[tex]\frac{x^2}{4}-\frac{10x}{2}+25[/tex]
Solution:
Given expression is [tex](\frac{1}{2}x-5)^2[/tex].
Simplify the expression using algebraic formula [tex](a-b)^2=a^2-2ab+b^2[/tex]
[tex](\frac{1}{2}x-5)^2=(\frac{x}{2}-5)^2[/tex]
[tex]=(\frac{x}{2})^2-2(\frac{x}{2})5+5^2[/tex]
[tex]=\frac{x^2}{4}-10(\frac{x}{2})+25[/tex]
[tex]=\frac{x^2}{4}-\frac{10x}{2}+25[/tex]
[tex](\frac{1}{2}x-5)^2=\frac{x^2}{4}-\frac{10x}{2}+25[/tex].
Hence, the simplified form of [tex](\frac{1}{2}x-5)^2[/tex] is [tex]\frac{x^2}{4}-\frac{10x}{2}+25[/tex].