Respuesta :

Answer: 0.228

Step-by-step explanation:

We know that the formula to find the upper limit of confidence interval for population proportion is given by :-

[tex]\hat{p}+ z*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex] , where

n= Sample size

[tex]\hat{p}[/tex] = Sample proportion

z* = critical value.

Let p be the  proportion of customers who responds yes to a survey.

As per given , we have

n= 200

[tex]\hat{p}=\dfrac{35}{200}=0.175[/tex]

Confidence level : 95%

The critical z-value for 95% confidence is z* = 1.96  [ from z-table]

Substitute all values in the formula , we get

[tex]0.175+(1.96)\sqrt{\dfrac{0.175(1-0.175)}{200}}[/tex]

[tex]=0.175+(1.96)\sqrt{0.000721875}[/tex]

[tex]=0.175+(1.96)(0.0268677315753)[/tex]

[tex]=0.227660753888\approx0.228[/tex]

Hence, the upper limit of a 95% confidence level estimate of the population proportion is 0.228.