Respuesta :
Answer:
[tex]\overline{X} = \{-3, -2, -1, 7, 8, 9 \}[/tex]
Step-by-step explanation:
The objective is to find the complement of the set given that
[tex]U = \{ x| x\in \mathbb{I} \; \wedge \; -3 \leq x \leq 9 \}\\[/tex]
[tex]X = \{x| x \in \mathbb{W} \;\wedge \; x<7 \}[/tex]
The set [tex]U[/tex], written comma-separated equals
[tex]U = \{ -3, -2, -1, 0, 1 , 2, 3, 4, 5 , 6, 7, 8, 9 \}[/tex]
and the set [tex]X[/tex] is
[tex]X = \{ 0, 1, 2, 3, 4, 5, 6 \}[/tex].
We need to find all elements from the set [tex]U[/tex] that are not in the set [tex]X[/tex].
Comparing the elements of this two sets yields
[tex]\overline{X} = \{-3, -2, -1, 7, 8, 9 \}[/tex]
where [tex]\overline{X}[/tex] denotes the complement of the set [tex]X[/tex].