A particle is moving along a straight line with an initial velocity of 3 m/s when it is subjected to a deceleration of a = - 1.1 v^1/2 m/s^2​​ .A. Determine how far it travels before it stops.B. How much time does it take?

Respuesta :

Answer:

Explanation:

Given that

initial velocity ,[tex]v= 3 m/s[/tex]

[tex]a=-1.1v^{\dfrac{1}{2}}[/tex]

We know that

[tex]a=v\dfrac{dv}{dx}[/tex]

Lets take x is the distance before coming to the rest.

The final speed of the particle = 0 m/s

[tex]v\dfrac{dv}{dx}=-1.1v^{\dfrac{1}{2}}[/tex]

[tex]\dfrac{dv}{dx}=-1.1v^{-\dfrac{1}{2}}[/tex]

[tex]v^{\dfrac{1}{2}}{dv}=-1.1dx[/tex]

[tex]\int_{3}^{0}v^{\dfrac{1}{2}}{dv}=-\int_{0}^{x}1.1dx[/tex]

[tex]\left [v^{\dfrac{3}{2}}\times \dfrac{2}{3}\right]_3^0=-1.1x[/tex]

[tex]3^{\dfrac{3}{2}}\times \dfrac{2}{3}=1.1x[/tex]

[tex]x=\dfrac{3.46}{1.1}\ m\\x=3.14\ m[/tex]

(b)time taken by it

[tex]a=\frac{\mathrm{d} v}{\mathrm{d} t}=-1.1\sqrt{v}[/tex]

[tex]\int_{3}^{0}\frac{dv}{\sqrt{v}}=-1.1\int_{0}^{t}dt[/tex]

[tex]\int_{0}^{3}\frac{dv}{\sqrt{v}}=1.1\int_{0}^{t}dt[/tex]

[tex]2\times 3\sqrt{3}=1.1t[/tex]

[tex]t=9.44\ s[/tex]