Respuesta :

Perimeter of a rectangle = 6x + 8

Solution:

Given area of a rectangle = [tex]2x^2+7x+3[/tex]

Let us first factor the given polynomial.

[tex]2x^2+7x+3=2x^2+x+6x+3[/tex]

                    [tex]=(2x^2+x)+(6x+3)[/tex]

Taking out common terms in the above expression

                    [tex]=x(2x+1)+3(2x+1)[/tex]

Taking out common term [tex]2x+1[/tex] in the above expression

                    [tex]=(2x+1)(x+3)[/tex]

[tex]2x^2+7x+3=(2x+1)(x+3)[/tex]

Area of a rectangle = l × b

Therefore, [tex]l=2x+1[/tex] and [tex]b=x+3[/tex]

Perimeter of a rectangle = 2(l + b)

                                         [tex]=2[(2x+1)+(x+3)][/tex]

                                         [tex]=2(2x+1+x+3)[/tex]

                                         [tex]=2(3x+4)[/tex]

                                         [tex]=6x+8[/tex]

The answer is same if you take l = x + 3 and b = 2x + 1.

Hence, perimeter of a rectangle = 6x + 8.