Respuesta :

Answer:

Perimeter of the rectangle=6x+8 square units

Step-by-step explanation:

Given that area of rectangle is [tex]2x^2+7x+3[/tex]

Area of rectangle=lw square units

[tex]2x^2+7x+3=2x^2+x+6x+3[/tex]

[tex]=x(2x+1)+3(2x+1)[/tex]

[tex]=(x+3)(2x+1)[/tex]

[tex]2x^2+7x+3=(x+3)(2x+1)[/tex]

Comparing the above equation with the given area we get

lw=(x+3)(2x+1)

Therefore length=x+3 and width=2x+1

To find the perimeter :

Perimeter of the rectangle=2(l+w) square units

[tex]=2((x+3)+(2x+1))[/tex]

[tex]=2(x+3+2x+1)[/tex]

[tex]=2(3x+4)[/tex]

[tex]=6x+8[/tex]

Therefore perimeter of the rectangle=6x+8 square units