rectangle ABCD is graphed in the cordinate plane. The following are the verticies of the rectangle; A(-6,-4),B(-4,-4),C(-4,-2), and D (-6,-2). what is the perimiter

Respuesta :

Answer:

Therefore Perimeter of Rectangle ABCD is 4 units

Step-by-step explanation:

Given:

ABCD is a Rectangle.

A(-6,-4),

B(-4,-4),

C(-4,-2), and

D (-6,-2).

To Find :

Perimeter of Rectangle = ?

Solution:

Perimeter of Rectangle is given as

[tex]\textrm{Perimeter of Rectangle}=2(Length+Width)[/tex]

Length = AB

Width = BC

Now By Distance Formula  we have'

[tex]l(AB) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]

Substituting the values we get

[tex]l(AB) = \sqrt{((-4-(-6))^{2}+(-4-(-4))^{2} )}[/tex]

[tex]l(AB) = \sqrt{((2)^{2}+(0)^{2} )}=2\ unit[/tex]

Similarly

[tex]l(BC) = \sqrt{((-4-(-4))^{2}+(-2-(-4))^{2} )}[/tex]

[tex]l(BC) = \sqrt{((0)^{2}+(2)^{2} )}=2\ unit[/tex]

Therefore now

Length = AB = 2 unit

Width = BC = 2 unit

Substituting the values  in Perimeter we get

[tex]\textrm{Perimeter of Rectangle}=2(2+2)=2(4)=8\ unit[/tex]

Therefore Perimeter of Rectangle ABCD is 4 units

Answer:

Therefore Perimeter of Rectangle ABCD is 4 units

Step-by-step explanation:

Given:

ABCD is a Rectangle.

A(-6,-4),

B(-4,-4),

C(-4,-2), and

D (-6,-2).

To Find :

Perimeter of Rectangle = ?

Solution: