Respuesta :
Answer:
Therefore Perimeter of Rectangle ABCD is 4 units
Step-by-step explanation:
Given:
ABCD is a Rectangle.
A(-6,-4),
B(-4,-4),
C(-4,-2), and
D (-6,-2).
To Find :
Perimeter of Rectangle = ?
Solution:
Perimeter of Rectangle is given as
[tex]\textrm{Perimeter of Rectangle}=2(Length+Width)[/tex]
Length = AB
Width = BC
Now By Distance Formula we have'
[tex]l(AB) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]
Substituting the values we get
[tex]l(AB) = \sqrt{((-4-(-6))^{2}+(-4-(-4))^{2} )}[/tex]
[tex]l(AB) = \sqrt{((2)^{2}+(0)^{2} )}=2\ unit[/tex]
Similarly
[tex]l(BC) = \sqrt{((-4-(-4))^{2}+(-2-(-4))^{2} )}[/tex]
[tex]l(BC) = \sqrt{((0)^{2}+(2)^{2} )}=2\ unit[/tex]
Therefore now
Length = AB = 2 unit
Width = BC = 2 unit
Substituting the values in Perimeter we get
[tex]\textrm{Perimeter of Rectangle}=2(2+2)=2(4)=8\ unit[/tex]
Therefore Perimeter of Rectangle ABCD is 4 units
Answer:
Therefore Perimeter of Rectangle ABCD is 4 units
Step-by-step explanation:
Given:
ABCD is a Rectangle.
A(-6,-4),
B(-4,-4),
C(-4,-2), and
D (-6,-2).
To Find :
Perimeter of Rectangle = ?
Solution: