Respuesta :

Dimensions are length 20 meter and width 14 meter

Solution:

Let "a" be the length of rectangle

Let "b" be the width of rectangle

Given that,

A rectangle has width that is 6 meters less than the length

Width = length - 6

b = a - 6

The area of the rectangle is 280 square meters

The area of the rectangle is given by formula:

[tex]Area = length \times width[/tex]

Substituting the values we get,

[tex]Area = a \times (a-6)\\\\280 = a^2-6a\\\\a^2-6a -280=0[/tex]

Solve the above equation by quadratic formula

[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}\\\\\quad x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=1,\:b=-6,\:c=-280:\quad a_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:1\left(-280\right)}}{2\cdot \:1}[/tex]

[tex]a =\frac{6 \pm \sqrt{36+1120}}{2}\\\\a = \frac{6 \pm \sqrt{1156}}{2}\\\\a = \frac{6 \pm 34}{2}\\\\Thus\ we\ have\ two\ solutions\\\\a = \frac{6+34}{2} \text{ or } a = \frac{6-34}{2}\\\\a = 20 \text{ or } a = -14[/tex]

Since, length cannot be negative, ignore a = -14

Thus solution of length is a = 20

Therefore,

width = length - 6

width = 20 - 6 = 14

Thus dimensions are length 20 meter and width 14 meter