Respuesta :

Population after 5 years = 534

Solution:

Given population, P = 690

Rate decrease, R = 5%

Number of years, n = 5

If the population decrease constantly R% , then the population after n years is

[tex]P(1-\frac{R}{100} )^n[/tex]

Substitute the given values in the above formula.

[tex]P(1-\frac{R}{100} )^n=690(1-\frac{5}{100})^5[/tex]

Cross multiply 1 and 100 to get the same denominator.

                   [tex]=690(\frac{100-5}{100})^5[/tex]

                   [tex]=690(\frac{95}{100})^5[/tex]

                   [tex]=690(\frac{19}{20})^5[/tex]

                   = 533.90

                   = 534

Hence the population after 5 years is 534.