Respuesta :

Answer:

[tex](4y^{6})^{3}-(10z^{2})^{3}[/tex]

Step-by-step explanation:

we have

[tex]64y^{18}-1000z^{6}[/tex]

we know that

[tex]64=4^{3}[/tex]

[tex]y^{18}=(y^{6})^{3}[/tex]

[tex]1000=10^{3}[/tex]

[tex]z^{6}=(z^{2})^{3}[/tex]

Substitute the values in the expression

[tex](4^{3})((y^{6})^{3})-(10^{3})((z^{2})^{3})[/tex]

[tex](4y^{6})^{3}-(10z^{2})^{3}[/tex]

Answer:

[tex](4y^6)^3-(10z^2)^3[/tex]

Step-by-step explanation:

We have to find which expression is equivalent to

 [tex]64y^{18}-1000z^6[/tex]

This can also be written as:

[tex]4^3(y^6)^3-10^3(z^2)^3\\\\=(4y^6)^3-(10z^2)^3[/tex]

Hence, option first is correct