Respuesta :

frika

Answer:

[tex]4x^2+72x+259=0[/tex]

Step-by-step explanation:

If [tex]x_1[/tex] and [tex]x_2[/tex] are the solutions to the quadratic equation, then this equation can be written as

[tex](x-x_1)(x-x_2)=0[/tex]

In your case,

[tex]x_1=-9+\dfrac{\sqrt{65}}{2}\\ \\x_1=-9-\dfrac{\sqrt{65}}{2}[/tex]

Then the equation is

[tex]\left(x-\left(-9+\dfrac{\sqrt{65}}{2}\right)\right) \left(x-\left(-9-\dfrac{\sqrt{65}}{2}\right)\right)=0\\ \\\left(x+9-\dfrac{\sqrt{65}}{2}\right)\left(x+9+\dfrac{\sqrt{65}}{2}\right)=0\\ \\x^2+9x+\dfrac{\sqrt{65}}{2}x+9x+81+\dfrac{9\sqrt{65}}{2}-\dfrac{\sqrt{65}}{2}x-\dfrac{9\sqrt{65}}{2}-\dfrac{65}{4}=0\\ \\x^2+18x+\dfrac{259}{4}=0\\ \\4x^2+72x+259=0[/tex]