Find the value of p and q

Answer:
The answer to your question is p = 27.7 q = 29
Step-by-step explanation:
Process
1.- Calculate the value of all the angles of the triangle
The angle of 50° and the one to the right are supplementary
x + 50 = 180
x = 130°
- The sum of the internal angles in a triangle equals 180°
30° + y + 130° = 180
y = 180 - 130 - 30
y = 180 - 160
y = 20°
- The angle of the right triangle
50 + 90 + z = 180
z = 180 - 90 - 50
z = 40°
If sum up the superior angles 20 + 40 = 60°, then the biggest triangle is a 30-60-90
2.- Calculate q using the trigonometric function tangent
tan Ф = q / 55
solve for q
q = 55 tan 30
q = 28.9 ≈ 29
3.- Calculate the hypotenuse of the biggest triangle
h² = 55² + 29²
h² = 3866
h = 62,12
4.- Use law of sines to find p
[tex]\frac{p}{sin 20} = \frac{62.12}{sin 130}[/tex]
solve for p
p = [tex]\frac{62.12 sin 20}{sin 130}[/tex]
p = 27.74
values are approximate & rounded to 2 decimal places
===================================================
Work Shown:
tan(angle) = opposite/adjacent
tan(30) = q/55
q = 55*tan(30)
q = 31.7542648054294
q = 31.75
--------
r = 55-p
tan(angle) = opposite/adjacent
tan(50) = q/(55-p)
tan(50) = q/r
tan(50) = 31.7542648054294/r
r*tan(50) = 31.7542648054294
r = 31.7542648054294/tan(50)
r = 26.6449918865414
55-p = 26.6449918865414
-p = 26.6449918865414-55
-p = -28.3550081134586
p = 28.3550081134586
p = 28.36