The difference in torque and mass applied determines the acceleration of
the system.
The acceleration is approximately 0.4703 m/s²
Reasons:
The mass of the left wheel = 2.5 kg
Radius of the left wheel = 24.03 cm
Mass of the right wheel = 2.3 kg
Radius of the right wheel = 31.38 cm
Mass on the left = 1.64 kg
Mass on the right = 1.27 kg
Acceleration due to gravity, g ≈ 9.8 m/s²
Required:
The acceleration of the system
Solution:
The given acceleration of the
T₃ - m₃·g = m₃·(-a)...(1)
T₄ - m₄·g = m₄·a...(2)
[tex]T_3 \cdot r_1 - T \cdot r_1 = I \cdot \alpha = m_1 \cdot r_1^2 \times \dfrac{a}{r_1} = \mathbf{m_1 \cdot r_1 \cdot a}[/tex]
T₃ - T = m₁·a...(3)
[tex]T \cdot r_2 - T_4 \cdot r_2 = \mathbf{ I \cdot \alpha} = m_2 \cdot r_2^2 \times \dfrac{a}{r_2} = m_2 \cdot r_2 \cdot a[/tex]
T - T₄ = m₂·a...(4)
Add equation (3) to equation (4) gives;
T₃ - T + (T - T₄) = T₃ - T₄ = m₁·a + m₂·a
Subtracting equation (2) from equation (1) gives;
(T₃ - m₃·g) - (T₄ - m₄·g) = m₃·a + m₄·a
T₃ - T₄ = -m₃·a - m₄·a - (m₄·g - m₃·g)
Which gives;
m₁·a + m₂·a = -m₃·a - m₄·a - (m₄·g - m₃·g)
a·(m₁ + m₂) = -a·(m₃ + m₄) - (m₄·g - m₃·g)
-(m₄·g - m₃·g) = (m₃·g - m₄·g) = a·(m₃ + m₄) + a·(m₁ + m₂) = a·(m₃ + m₄ + m₁ + m₂)
[tex]a = \mathbf{\dfrac{m_3 \cdot g - m_4 \cdot g}{(m_3 + m_4 + m_1 - m_2)}}[/tex]
[tex]a = \dfrac{1.64 \times 9.8 - 1.27\times 9.8}{(1.27 +1.64 + 2.5 + 2.3)} \approx 0.4703[/tex]
The acceleration is a ≈ 0.4703 m/s²
Learn more here:
https://brainly.com/question/14970869