A regulation basketball has a 32 cm diameter
and may be approximated as a thin spherical
shell.
How long will it take a basketball starting
from rest to roll without slipping 4.8 m down
an incline that makes an angle of 39.4◦ with
the horizontal? The acceleration of gravity is
9.81 m/s^2
Answer in units of s

Respuesta :

Answer:

1.8 s

Explanation:

Potential energy = kinetic energy + rotational energy

mgh = ½ mv² + ½ Iω²

For a thin spherical shell, I = ⅔ mr².

mgh = ½ mv² + ½ (⅔ mr²) ω²

mgh = ½ mv² + ⅓ mr²ω²

For rolling without slipping, v = ωr.

mgh = ½ mv² + ⅓ mv²

mgh = ⅚ mv²

gh = ⅚ v²

v = √(1.2gh)

v = √(1.2 × 9.81 m/s² × 4.8 m sin 39.4°)

v = 5.47 m/s

The acceleration down the incline is constant, so given:

Δx = 4.8 m

v₀ = 0 m/s

v = 5.47 m/s

Find: t

Δx = ½ (v + v₀) t

t = 2Δx / (v + v₀)

t = 2 (4.8 m) / (5.47 m/s + 0 m/s)

t = 1.76 s

Rounding to two significant figures, it takes 1.8 seconds.