Suppose the radius of the sphere is increasing at a constant rate of 0.3 centimeters per second. At the moment when the radius is 24 centimeters, the volume is increasing at a rate of?

Respuesta :

At the moment when the radius is 24 centimeters, the volume is increasing at a rate of 2171.47 cm³/min.

Step-by-step explanation:

We have equation for volume of a sphere

             [tex]V=\frac{4}{3}\pi r^3[/tex]

where r is the radius

Differentiating with respect to time,

            [tex]\frac{dV}{dt}=\frac{d}{dt}\left (\frac{4}{3}\pi r^3 \right )\\\\\frac{dV}{dt}=\frac{4}{3}\pi \times 3r^2\times \frac{dr}{dt}\\\\\frac{dV}{dt}=4\pi r^2\times \frac{dr}{dt}[/tex]

Given that

           Radius, r = 24 cm

           [tex]\frac{dr}{dt}=0.3cm/s[/tex]

Substituting

           [tex]\frac{dV}{dt}=4\pi r^2\times \frac{dr}{dt}\\\\\frac{dV}{dt}=4\pi \times 24^2\times 0.3\\\\\frac{dV}{dt}=2171.47cm^3/min[/tex]

At the moment when the radius is 24 centimeters, the volume is increasing at a rate of 2171.47 cm³/min.