Which shows the expression below in simplified form? (7 × 10-3) - (2.3 × 10-6) A. 6.9977 × 10-3 B. 6.99977 × 10-3 C. 6.9977 × 10-4 D. 6.977 × 10-3

Respuesta :

Option A

[tex](7 \times 10^{-3}) - (2.3 \times 10^{-6}) = 6.9977 \times 10^{-3}[/tex]

Solution:

Given expression is:

[tex](7 \times 10^{-3}) - (2.3 \times 10^{-6})[/tex]

To evaluate the expression, let us make the exponent of 10 same

[tex]2.3 \times 10^{-6} = 0.0023 \times 10^{-6+3} = 0.0023 \times 10^{-3}[/tex]

[ Here, decimal point is moved three times left, so add 3 ]

Therefore,

[tex](7 \times 10^{-3}) - (2.3 \times 10^{-6}) = (7 \times 10^{-3}) - (0.0023 \times 10^{-3})[/tex]

[tex]\text{Take the } 10^{-3} \text{ as common }[/tex]

[tex](7 \times 10^{-3}) - (0.0023 \times 10^{-3}) = 10^{-3}(7-0.0023)\\\\\text{ Solve for terms inside the bracket }\\\\(7 \times 10^{-3}) - (0.0023 \times 10^{-3}) = 10^{-3} \times 6.9977\\\\\text{Therefore, the simplified expression is: }\\\\(7 \times 10^{-3}) - (0.0023 \times 10^{-3}) = 6.9977 \times 10^{-3}[/tex]

Thus Option A is correct