The mass of the second car is 1434.21 kg
Explanation:
Using law of conservation of momentum,
[tex]m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) v[/tex]
Given:
[tex]m_{1}[/tex] = 1090 kg
[tex]u_{1}[/tex] = 11 m/s
[tex]u_{2}[/tex] = 0
v = 4.75 m/s
We need to find [tex]m_{2}[/tex]
When substituting the given values in the above equation, we get
[tex](1090 \times 11)+\left(m_{2} \times 0\right)=\left(1090+m_{2}\right) 4.75[/tex]
[tex]11990=5177.5+4.75 m_{2}[/tex]
[tex]4.75 m_{2}=11990-5177.5[/tex]
[tex]4.75 m_{2}=6812.5[/tex]
[tex]m_{2}=\frac{6812.5}{4.75}=1434.21 \mathrm{kg}[/tex]