Answer:
Explanation:
Given
distance [tex]s(t)=13\sin (t)+40[/tex]
at [tex]t=\frac{\pi }{3}[/tex]
[tex]s(\frac{\pi }{3})=13\sin (\frac{\pi }{3})+40[/tex]
[tex]s(\frac{\pi }{3})=13\times \frac{\sqrt{3}}{2}+40[/tex]
at [tex]t=\frac{13\pi}{3}=4\pi+\frac{\pi}{3}[/tex]
[tex]s(4\pi+\frac{\pi}{3})=13\sin (4\pi+\frac{\pi}{3})+40[/tex]
Average velocity is change in position w.r.t time
[tex]v_{avg}=\frac{s(4\pi+\frac{\pi}{3})-s(\frac{\pi }{3})}{4\pi+\frac{\pi}{3}-\frac{\pi }{3}}[/tex]
[tex]v_{avg}=0[/tex]