Answer: The ratio of f at the higher temperature to f at the lower temperature is 4.736
Explanation:
According to the Arrhenius equation,
[tex]f=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{f_2}{f_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]f_1[/tex] = rate constant at 525K
[tex]K_2[/tex] = rate constant at 545K
[tex]Ea[/tex] = activation energy for the reaction = 185kJ/mol= 185000J/mol (1kJ=1000J)
R = gas constant = 8.314 J/mole.K
[tex]T_1[/tex] = initial temperature = 525 K
[tex]T_2[/tex] = final temperature = 545 K
Now put all the given values in this formula, we get
[tex]\log (\frac{f_2}{f_1})=\frac{185000J/mol}{2.303\times 8.314J/mole.K}[\frac{1}{525K}-\frac{1}{545K}][/tex]
[tex]\log (\frac{f_2}{f_1})=0.6754[/tex]
[tex](\frac{f_2}{f_1})=4.736[/tex]
Therefore, the ratio of f at the higher temperature to f at the lower temperature is 4.736