Answer: RS = 3[tex]\sqrt{10}[/tex]
Step-by-step explanation:
To calculate the length RS , all we need do is to find the distance between R and S. The formula for finding the distance between two points is given as :
D = [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
[tex]x_{1}[/tex] = 3
[tex]x_{2}[/tex] = -3
[tex]y_{1}[/tex] = 2
[tex]y_{2}[/tex] = -1
Substituting the values we have :
RS = [tex]\sqrt{(-3-3)^{2}+(-1-2)^{2}}[/tex]
RS = [tex]\sqrt{9^{2}+3^{2} }[/tex]
RS = [tex]\sqrt{81+9}[/tex]
RS = [tex]\sqrt{90}[/tex]
this can also be written as
RS = [tex]\sqrt{9}[/tex] X
RS = 3[tex]\sqrt{10}[/tex]