The math club at a certain school has 10 members, of which 6 are seniors and 4 juniors. In how many ways can they form a group of 5 members to go to a tournament, if at least 4 of them have to be seniors (aka either a group of 4 seniors and 1 junior, or a group of 5 seniors

Respuesta :

Answer: 66 ways

Step-by-step explanation:

Given;

Number of senior math club members = 6

Number of junior math club members = 4

Total number of members of the club = 10

To form a group of 5 members with at least 4 seniors.

N = Na + Nb

Na = number of possible ways of selecting 4 seniors and 1 junior

Nb = number of possible ways of selecting 5 seniors.

Since the selection is does not involve ranks(order is not important)

Na = 6C4 × 4C1 = 6!/4!2! × 4!/3!1! = 15 ×4 = 60

Nb = 6C5 = 6!/5!1! = 6

N = Na + Nb = 60+6

N = 66 ways

Using the combination formula, it is found that there are 66 ways to form the groups.

The order in which the students are selected is not important, hence, the combination formula is used to solve this question.

What is the combination formula?

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

In this problem, the possible groups are:

  • One junior from a set of 4 and 4 seniors from a set of 6.
  • 5 seniors from a set of 6.

Hence:

[tex]T = C_{4,1}C_{6,4} + C_{6,5} = \frac{4!}{1!3!}\frac{6!}{4!2!} + \frac{6!}{5!1!} = 4(15) + 6 = 60 + 6 = 66[/tex]

There are 66 ways to form the groups.

You can learn more about the combination formula at https://brainly.com/question/25821700