Answer:
85413.20177 W
2050.831684248 kWh
184.5748512 dollars
Explanation:
d = Diameter of blade = 100 m
r = Radius = [tex]\dfrac{d}{2}=\dfrac{100}{2}=50\ m[/tex]
[tex]\eta[/tex] = Efficiency = 0.34
[tex]\rho[/tex] = Density of air = 1.25 kg/m³
V = Velocity of wind = 8 m/s
A = Area = [tex]\pi r^2[/tex]
The power of a wind turbine is given by
[tex]P=\dfrac{1}{2}\rho AV^3\eta\\\Rightarrow P=\dfrac{1}{2}\times 1.25\times \pi\times 50^2\times 8^3\times 0.34\\\Rightarrow P=854513.20177\ W[/tex]
The power is 85413.20177 W
Energy is given by
[tex]E=Pt\\\Rightarrow E=854513.20177\times 24\\\Rightarrow E=20508316.84248\ Wh\\\Rightarrow E=2050.831684248\ kWh[/tex]
The energy is 2050.831684248 kWh
The revenue is given by
[tex]0.09\times 2050.831684248=184.5748512\$[/tex]
The revenue generated is 184.5748512 dollars