Respuesta :

Step-by-step explanation:

For solving this, it's important to know basic trigonometric functions:

sin = opposite side / hypotenuse

cos = adjacent side / hypotenuse

tan = opposite side / adjacent side

It's also important to know that it is necessary to know their values for special right triangles and angles of 30°, 45° and 60°

1. We are given angle if 45° and its adjacent side of 13. We want to know the opposite side (x) and hypotenuse (y). So:

tan = opposite side / adjacent side

tan 45 = x / 13

1 = x / 13

x = 13

Remember that tangent of 45° angle is 1.

We found the opposite side to be also 13.

To find y we can use:

sin = opposite side / hypotenuse

sin 45 = 13 / y

(√2)/2 = 13 / y

y = 13√2

Important to remember, sin 45 and cos 45 are (√2)/2

2. We are given 45° angle and hypotenuse of 30. We need to find opposite side (x) and adjacent side (y).

sin = opposite side / hypotenuse

sin 45 = x / 30

(√2)/2 = x / 30

x = 15√2

Also:

cos = adjacent side / hypotenuse

cos 45 = y / 30

(√2)/2 = y / 30

y = 15√2

We can conclude that in the right triangle, when angle is 45°, opposite and adjacent sides are equal.

3. We are given angle of 60° and adjacent side of 3. We need to find opposite side (y) and hypotenuse (x).

cos = adjacent side / hypotenuse

cos 60° = 3 / x

1/2 = 3 / x

x = 6

Note that cos 60° equals 1/2.

sin = opposite side / hypotenuse

sin 60° = y / 6

(√3)/2 = y / 6

y = 3√3

Note that sin 60° equals (√3)/2.

4. We are given angle of 30° and hypotenuse of 34. We need to find opposite side (y) and adjacent side (x).

sin = opposite side / hypotenuse

sin 30° = y / 34

1/2 = y / 34

y = 17

Note that sin 30° equals to cos 60° equals 1/2.

cos = adjacent side / hypotenuse

cos 30° = x / 34

(√3)/2 = x / 34

x = 17√3

Remember that cos 30° equals to sin 60° which is (√3)/2.

5. We are given an angle of 45° and hypotenuse of 10√2. We need to find the opposite side (y) and adjacent side (x).

sin = opposite side / hypotenuse

sin 45° = y / 10√2

(√2)/2 = y / 10√2

y = 10

To save time, we already said that opposite and adjacent sides are equal in right triangle with 45° angle, so x = y = 10.

6. We are given angle of 60° and opposite side of 25√3. We need to find adjacent side (y) and hypotenuse (x).

sin = opposite side / hypotenuse

sin 60° = 25√3 / x

(√3)/2 = 25√3 / x

x = 50.

tan = opposite side / adjacent side

tan 60° = 25√3 / y

√3 = 25√3 / y

y = 25.

Remember that tangent of 60° angle is √3.

7. We are given angle of 45° and hypotenuse of 2√14. We need to find adjacent side (x) and opposite side (y).

cos = adjacent side / hypotenuse

cos 45° = x / 2√14

(√2)/2 = x / 2√14

x = √28

Again, adjacent and opposite sides are equal in 45° right triangle, so x = y = √28.

8. We are given an angle of 30° and an adjacent side of 24. We need to find the opposite side (y) and hypotenuse (x).

tan = opposite side / adjacent side

tan 30° = y / 24

(√3)/3 = y / 24

y = 8√3

sin = opposite side / hypotenuse

sin 30° = 8√3 / x

1/2 = 8√3 / x

x = 16√3

Note that tan = sin/cos, so tan 30° = sin 30° / cos 30°

tan 30° = 1/2 / (√3)/2 = (√3)/3

I'm showing you this, so you don't have to memorize tan for special angles, you can find it from sin and cos.

9. We are given an angle of 60° and hypotenuse of 22√3. We need to find the opposite side (y) and adjacent side (x).

sin = opposite side / hypotenuse

sin 60° = y / 22√3

(√3)/2 = y / 22√3

y = 33

cos = adjacent side / hypotenuse

cos 60° = x / 22√3

1/2 = x / 22√3

x = 11√3

10. We are given an angle of 30° and the opposite side of √6. We need to find the adjacent side (x) and hypotenuse (y).

sin = opposite side / hypotenuse

sin 30° = √6 / y

1/2 = √6 / y

y = 2√6

tan = opposite side / adjacent side

tan 30° = √6 / x

(√3)/3 = √6 / x

x = √18

11. We are given an angle of 45° and an adjacent side of √10. We need to find the opposite side (x) and hypotenuse (y).

In this triangle opposite and adjacent sides are equal (45° angle), so x = √10

sin = opposite side / hypotenuse

sin 45° = √10 / y

(√2)/2 = √10 / y

y = √20 = 2√5

12. We are given an angle of 60° and the opposite side of 4√21. We need to find the adjacent side (x) and hypotenuse (y).

sin = opposite side / hypotenuse

sin 60° = 4√21 / y

(√3)/2 = 4√21 / y

y = 8√7

tan = opposite side / adjacent side

tan 60° = 4√21 / x

√3 = 4√21 / x

x = 4√7

13. Now things get a little trickier. We are given an angle of 30° and the opposite side of 17. We need to find the adjacent side (x).

Note that, at the moment, we are only dealing with this smaller triangle.

tan = opposite side / adjacent side

tan 30° = 17 / x

(√3)/3 = 17 / x

x = 17√3

Now, note that hypotenuse of the smaller triangle is the same length as the side z (adjacent and opposite side of 45° angle)

With Pythagorean theorem, we can find the hypotenuse of the smaller triangle, which equals to z.

z = √(17^2 + (17√3)^2)

z = 34

And now, finally to find y (hypotenuse of bigger triangle). We are given 45° angle and adjacent side z (34).

cos = adjacent side / hypotenuse

cos 45° = 34 / y

(√2)/2 = 34 / y

y = 34√2

14. Photo added

Ver imagen auroraborealis

Unit 8: Homework 2; Special Right Triangles

Correct responses;

  1. x = 13, y = 13·√2
  2. x = 15·√2, y = 15·√2
  3. x = 6, y = 3·√3
  4. x = 17·√3, y = 17
  5. x = 10, y = 10
  6. x = 50, y = 25
  7. x = 2·√17, y = 2·√17
  8. x = 16·√3, y = 8·√3
  9. x = 33, y = 11·√3
  10. x = 3·√2, y = 2·√6
  11. x = √10, y = 2·√5
  12. x = 4·√7, y = 8·√7
  13. x = 17·√3, y = 34·√2, z = 34
  14. x = 18·√3, y = 18, z = 9

Methods used for finding the above values

Solutions:

1. An acute angle of the right triangle is 45°, therefore, the triangle is an isosceles triangle, and the leg lengths are equal.

Therefore;

  • x = 13

The length of the hypotenuse side of an isosceles right triangle = A leg length × √2

Therefore;

  • The length of the hypotenuse side, y = 13·√2

2. An interior angle of the triangle = 45°

Therefore;

x = y

30 = x·√2

Which gives;

[tex]x = \dfrac{30}{\sqrt{2} } = \dfrac{30 \cdot \sqrt{2} }{2} = \mathbf{15 \cdot \sqrt{2}} = y[/tex]

  • x = y = 15·√2

3. The interior angle adjacent to the leg of length 3 = 60°

Therefore;

The hypotenuse side, x = 2 × adjacent leg length

Which gives;

  • x = 2 × 3 = 6

In a right triangle having an interior angle of 60°, we have;

2 × Opposite leg length = √3 × The length of the hypotenuse

Therefore;

2 × y = √3 × x

Which gives;

2 × y = √3 × 6

  • y = 3·√3

4. The leg lengths are, x and y

An interior angle opposite to the leg length y is 30°

The hypotenuse side = 34

The length of the hypotenuse side = 2 × The leg length opposite the 30° angle

Therefore;

34 = 2 × y

[tex]y = \dfrac{34}{2} = \mathbf{17}[/tex]

  • y = 17

The leg with length x is adjacent to the 30° angle, which gives;

2·x = √3 × 34

  • x = 17·√3

5. An acute interior angle is 45°

Therefore, the relationship are;

x = y

x·√2 = 10·√2

Which gives;

  • x = 10 = y

6. An acute interior angle is 60°, which in relation to the position of the sides gives;

x·√3 = 2 × 25·√3

Therefore;

x = 2 × 25 = 50

x = 50

y = x ÷ 2

Therefore;

y = 50 ÷ 2 = 25

  • y = 25

7. An acute interior angle is 45°, which gives;

x·√2 = 2·√14

[tex]x = \dfrac{2 \cdot \sqrt{14} }{\sqrt{2} } = \sqrt{2} \times \sqrt{14} = \sqrt{28} = 2 \cdot \sqrt{7} [/tex]

  • x = 2·√7
  • y = 2·√7

8. An interior angle is 30°

With regards to the location of the variables, we have;

2 × 24 = x·√3

Therefore;

  • x = 16·√3

2·y = x

Therefore;

[tex]y = \dfrac{x}{2} [/tex]

Which gives;

[tex]y = \dfrac{16 \cdot \sqrt{2} }{2} = \mathbf{8 \cdot \sqrt{2} }[/tex]

  • y = 8·√2

9. An interior angle is 60°, which gives;

[tex]y = \dfrac{22 \cdot \sqrt{3} }{2} = 11 \cdot \sqrt{3} [/tex]

  • y = 11·√3

√3 × 22·√3 = 2 × x

x = 11·√3 × √3 = 33

  • x = 33

10. An angle of the right triangle is 30°

With respect to the location of the variables, we have;

y = 2 × √6 = 2·√6

  • y = 2·√6

y·√3 = 2 × x

Therefore;

2·√6 × √3 = 2 × x

x = √(18) = 3·√2

  • x = 3·√2

11. Right triangle with a 45° interior angle

  • x = [tex]\underline{\sqrt{10} }[/tex]

y = √(10) × √2 = √(20) = 2·√5

  • y = 2·√5

12. Interior angle of the right triangle is 60°

y·√3 = 2 × 4·√(21) = 8 × √7 × √3

  • y = 8·√7

[tex]x = \dfrac{y}{2} [/tex]

Therefore;

[tex]x = \dfrac{8 \cdot \sqrt{7} }{2} = \mathbf{ 4 \cdot \sqrt{7} }[/tex]

  • x = 4·√7

13. The ratio of the adjacent leg to the opposite leg to the 30° angle is √3, therefore;

  • x = 17·√3

The hypotenuse side = 2 × 17 = 34

The hypotenuse side of the right triangle having a 30° angle is a leg in

the right triangle that has the 45° angle, therefore;

  • z = 34
  • y = 34·√2

14. In the 60° right triangle, we have;

x·√3 = 2 × 27 = 54 = 18 × 3

  • x = 18·√3

[tex]Length \ of \ the \ common \ side = \dfrac{x}{2} [/tex]

Which gives;

[tex]Length \ of \ the \ common \ side = \dfrac{18 \cdot \sqrt{3} }{2} = 9 \cdot \sqrt{3} [/tex]

Length of the common side = 9·√3

In the 30° right triangle, we have;

x·√3 = 9·√3

Therefore;

  • z = 9

y = 2·x

Therefore;

  • y = 2 × 9 = 18

Learn more about special right triangles here:

https://brainly.com/question/10635635