Answer:
The values are [tex]x=\frac{35}{493}[/tex] and
[tex]y=\frac{26}{493}[/tex]
The solution is ([tex]\frac{35}{493},\frac{26}{493}[/tex])
Step-by-step explanation:
Given equations are [tex]23x-12y=1\hfill (1)[/tex]
[tex]-43x+y=-3\hfill (2)[/tex]
To solve the given equations :
Multiply the equation (2) into 12 we get
[tex]-516x+12y=-36\hfill (3)[/tex]Now adding equations (1) and (3) we get
23x-12y=1
-516x+12y=-36
____________
-493x=-35
[tex]x=\frac{35}{493}[/tex]
Substitute the value of [tex]x=\frac{35}{493}[/tex] in equation (1) we get
[tex]23\times (\frac{35}{493})-12y=1[/tex]
[tex]\frac{805}{493}-12y=1[/tex]
[tex]-12y=1-\frac{805}{493}[/tex]
[tex]-12y=\frac{-312}{493}[/tex]
[tex]y=\frac{26}{493}[/tex]
Therefore the values are [tex]x=\frac{35}{493}[/tex] and
[tex]y=\frac{26}{493}[/tex]
The solution is ([tex]\frac{35}{493},\frac{26}{493}[/tex])