Respuesta :

Answer:

The values are [tex]x=\frac{35}{493}[/tex] and

[tex]y=\frac{26}{493}[/tex]

The solution is  ([tex]\frac{35}{493},\frac{26}{493}[/tex])

Step-by-step explanation:

Given equations are [tex]23x-12y=1\hfill (1)[/tex]

[tex]-43x+y=-3\hfill (2)[/tex]

To solve the given equations :

Multiply the equation (2) into 12 we get

[tex]-516x+12y=-36\hfill (3)[/tex]Now adding equations (1) and (3) we get

23x-12y=1

-516x+12y=-36

____________

-493x=-35

[tex]x=\frac{35}{493}[/tex]

Substitute the value of [tex]x=\frac{35}{493}[/tex] in equation (1) we get

[tex]23\times (\frac{35}{493})-12y=1[/tex]

[tex]\frac{805}{493}-12y=1[/tex]

[tex]-12y=1-\frac{805}{493}[/tex]

[tex]-12y=\frac{-312}{493}[/tex]

[tex]y=\frac{26}{493}[/tex]

Therefore the values are [tex]x=\frac{35}{493}[/tex] and

[tex]y=\frac{26}{493}[/tex]

The solution is  ([tex]\frac{35}{493},\frac{26}{493}[/tex])