Answer:
[tex] Cov (Z_1, Z_2)= 1.1*144 +2.1*50 + 64 =213[/tex]
Step-by-step explanation:
Data given:
Var(X) = 144, Var(Y) = 64 and Var(X + Y) = 308
We have defined the following random variable:
[tex] Z_1 = X+Y[/tex]
And if we find the variance for Z1 we got:
[tex] Var(Z_1) = Var(X) +Var(Y) + 2 cov (X,Y)[/tex]
If we solve for the [tex] Cov(X,Y)[/tex] we got:
[tex]Cov(X,Y) =\frac{Var(X+Y)-Var(X)-Var(Y)}{2}[/tex]
And replacing the values that we have we got:
[tex]Cov(X,Y) =\frac{308-144-64}{2}=50[/tex]
Now we define the new random variable [tex] Z_2[/tex] like this:
[tex] Z_2 = 1.1 X + Y+5[/tex]
And we are interested on find the following covariance:
[tex] Cov (Z_1, Z_2) [/tex]
[tex] Cov (Z_1, Z_2)= Cox( X+Y, 1.1X +Y +5) [/tex]
And if we apply properties of covariance we have this:
[tex] Cov (Z_1, Z_2)= Cov (X,1.1X)+ Cov (X,Y) +Cov(X,5) +Cov(Y,1.1X) +Cov (Y,Y) + Cov (Y,5)[/tex]
We know that if a is a constant and X,Y random variables [tex] cov(a,X) =0[/tex], and [tex] Cov(X,X) = Var(X)[/tex] , [tex] Cov (X, aY) = aCov(X,y)[/tex], so then using these properties we got:
[tex] Cov (Z_1, Z_2)= 1.1 Var(X) +2.1 Cov (X,Y) + Var(Y)[/tex]
[tex] Cov (Z_1, Z_2)= 1.1*144 +2.1*50 + 64 =213[/tex]