1A soccer ball is kicked horizontally off a 22.0-meter high hill and lands a distance of 35.0 meters from the edge of the hill. Determine the initial horizontal velocity of the soccer ball.

Respuesta :

The initial horizontal velocity of the soccer ball is 16.5 m/s

Explanation:

When we throw a ball, there is a constant velocity horizontal motion and there is an accelerated vertical motion. These components act independently of each other.  Horizontal motion is constant velocity motion.

            [tex]v_{x f}=v_{x i}=v_{x}[/tex]

[tex]a_{x}=0[/tex], so [tex]x=v_{i x} t+\left(\frac{1}{2}\right) a_{x} t^{2}[/tex] for horizontal motion

[tex]y=v_{i y} t+\left(\frac{1}{2}\right) a_{y} t^{2}[/tex] for vertical motion

Given:

x = 35 m

[tex]a_{x}=0 \mathrm{m} / \mathrm{s}^{2}[/tex]

Need to find [tex]v_{i x}[/tex]

y = - 22 m

[tex]v_{i y}=0 \mathrm{m} / \mathrm{s}[/tex]

[tex]a_{y}=-9.8 \mathrm{m} / \mathrm{s}^{2}[/tex]  (negative sign indicates downward motion)

By substituting all known values, we can solve for 't' value as below

[tex]y=v_{i y} t+\left(\frac{1}{2}\right) a_{y} t^{2}[/tex]

[tex]-22=0(t)+\left(0.5 \times-9.8 \times t^{2}\right)[/tex]

[tex]t^{2}=\frac{-22}{0.5 \times-9.8}=\frac{-22}{-4.9}=4.4897[/tex]

Taking square root, we get  t = 2.12 seconds

Now, substitute these to find initial horizontal velocity

[tex]x=v_{i x} t+\left(\frac{1}{2}\right) a_{x} t^{2}[/tex]

[tex]35=v_{i x}(2.12)+\left(0.5 \times 0 \times(2.12)^{2}\right)[/tex]

[tex]35=v_{i x}(2.12)+0[/tex]

[tex]v_{i x}=\frac{35}{2.12}=16.5 \mathrm{m} / \mathrm{s}[/tex]