Respuesta :
Answer:
f−1(f(x)) = f(f−1(x)) = x
Step-by-step explanation:
Follow this simple example using the function f(x) = x + 2
f(x) = x + 2
NOw we find the inverse function f^(1)(x).
y = x + 2
x = y + 2
y = x - 2
f^(-1)(x) = x - 2
The inverse function is f^(-1)(x) = x - 2
Now we do the two compositions of functions:
f^(-1)(f(x)) = x + 2 - 2 = x
f(f^(-1)(x)) = x - 2 + 2 = x
Both are equal to x.
Answer: f−1(f(x)) = f(f−1(x)) = x
The expression [tex]f^{-1}(f(x)) = f(f^{-1}(x)) = x[/tex]
We are to prove the relationship;
[tex]f^{-1}(f(x)) = f(f^{-1}(x)) = ?[/tex]
To get the unknown, let f(x) = x - 2
Find its inverse:
Let y = x - 2
Replace y with x;
x = y - 2
y = x+2
Hence [tex]f^{-1}x = x+2[/tex]
Next is to get [tex]f(f^{-1}(x))[/tex]
[tex]f(f^{-1}(x))=f(x+2) = (x+2) - 2\\f(f^{-1}(x))= x\\[/tex]
We can conclude that [tex]f^{-1}(f(x)) = f(f^{-1}(x)) = x[/tex]
Learn more here: https://brainly.com/question/12220962