Respuesta :

Answer:

q=0.06 C

Explanation:

Given that

Net flux [tex]\phi = 6.78\times 10^{9}\ Nm^2/C[/tex]

Lets take charge inside Gaussian surface = q C

We know that

[tex]\phi=\dfrac{q}{\varepsilon _o}[/tex]

[tex]\varepsilon _o=8.854\times 10^{-12} farads\ per\ meter[/tex]

Now by putting the values in the above equation we get

[tex]6.78\times 10^{9}=\dfrac{q}{8.854\times 10^{-12}}[/tex]

[tex]q=6.78\times 10^{9}\times 8.854\times 10^{-12}\ C[/tex]

q=0.06 C

Therefore the net charge inside the surface will be 0.06 C.

q=0.06 C