Respuesta :
Answer:
Force = [tex]4.16\times 10^{29}\ N[/tex]
Explanation:
Given:
Mass of Sun (M) = [tex]1.99\times 10^{30}\ kg[/tex]
mass of Jupiter (m) = [tex]7.79\times 10^8\ kg[/tex]
Distance between Sun and Jupiter (d) = [tex]1.90\times 10^{27}\ kg[/tex]
The gravitational force between the two is given as:
[tex]F_g=\frac{GMm}{d^2}[/tex]
Where, [tex]G=6.674\times 10^{-11}\ m^3 kg^{-1} s^{-2}[/tex]
Now, plug in all the given values and solve for [tex]F_g[/tex]. This gives,
[tex]F_g=\frac{6.674\times 10^{-11}\times 1.99\times 10^{30}\times1.90\times 10^{27} }{(7.79\times 10^8)^2}\\\\F_g=4.16\times 10^{29}\ N[/tex]
Therefore, the gravitational force between the Sun and Jupiter to three significant figures is [tex]4.16\times 10^{29}\ N[/tex]