Find A and B given that the function y=Ax√+Bx√ has a minimum value of 54 at x = 81.

a.)A=486 and B=6
b.)A=243 and B=6
c.)A=486 and B=3
d.)A=243 and B=9
e.)A=243 and B=3

Respuesta :

Answer:

Option e.

Step-by-step explanation:

Consider the given equation is  

[tex]y=\dfrac{A}{\sqrt{x}}+B\sqrt{x}[/tex]

The minimum value of function is 54 at x=81.

Substitute y=54 and x=81 in the given function.

[tex]54=\dfrac{A}{\sqrt{81}}+B\sqrt{81}[/tex]

[tex]54=\dfrac{A}{9}+9B[/tex]

Multiply both sides by 9.

[tex]486=A+81B[/tex]              .... (1)

Differentiate the given function with respect to x.

[tex]y'=\dfrac{-0.5A}{x^{3/2}}+\dfrac{0.5B}{\sqrt{x}}[/tex]

[tex]y'=\dfrac{0.5}{\sqrt{x}}(-\dfrac{A}{x}+B)[/tex]

Equate y'=0 t find the critical fpoint.

[tex]\dfrac{0.5}{\sqrt{x}}(-\dfrac{A}{x}+B)=0[/tex]

Substitute x=81 in the above equation.

[tex]\dfrac{0.5}{\sqrt{81}}(-\dfrac{A}{81}+B)=0[/tex]

[tex]-\dfrac{A}{81}+B=0[/tex]

[tex]-\dfrac{A}{81}=-B[/tex]

[tex]A=81B[/tex]            .... (2)

Substitute this value in equation (1).

[tex]486=A+A[/tex]

[tex]486=2A[/tex]

[tex]243=A[/tex]

Substitute this value in equation (2).

[tex]243=81B[/tex]

[tex]3=B[/tex]

The value of A is 243 and the value of B is 3. Therefore, the correct option is e.

The value of  A and B given that the function [tex]y=\frac{A}{\sqrt{x} }+B\sqrt{x}[/tex] has a minimum value of 54 at x = 81 is 243 and 3 respectively

Given the function

[tex]y=\frac{A}{\sqrt{x} }+B\sqrt{x}[/tex]

If y= 54 where x = 81, hence

[tex]54=\frac{A}{\sqrt{81} }+B\sqrt{81}\\54=\frac{A}{9}+9B\\486=A+81B\\ A+81B=486[/tex]

At the minimum point [tex]\frac{dy}{dx} = 0[/tex]

Differentiate the given function:

[tex]y=\frac{A}{\sqrt{x} }+B\sqrt{x}\\y'=\frac{-0.5A}{{x^{3/2}} }+\frac{B}{x^{1/2}} \\\frac{-0.5A}{{x^{3/2}} }+\frac{B}{x^{1/2}}=0[/tex]

Substitute x = 81 to hav:

[tex]\frac{-0.5A}{81^{2/3}} +\frac{B}{81^{1/2}}=0\\\frac{-A}{81} + B=0\\-A+81B=0\\A=81B ......................... 2[/tex]

Substitute equation 2 into 1:

[tex]81B+81B= 486\\162B=486\\B=\frac{486}{162} \\B=3[/tex]

Get the value of A:

[tex]A=81B\\A=81(3)\\A=243[/tex]

Hence the value of  A and B given that the function [tex]y=\frac{A}{\sqrt{x} }+B\sqrt{x}[/tex] has a minimum value of 54 at x = 81 is 243 and 3 respectively

Learn more here; https://brainly.com/question/2612098