The electric field strength 4.0 cm from the surface of a 10-cm-diameter metal ball is 60,000 N/C. What is the charge (in nC) on the ball?

Respuesta :

Answer:

54 n C

Explanation:

given,

Electric field strength = 60,000 N/m

diameter of the sphere = 10 cm

distance of the electric field = 4 cm

distance of the point form the center of ball

 r = 10/2 + 4

 r = 9 cm = 0.09 m

the electric field strength

 [tex]E = \dfrac{kq}{r^2}[/tex]

 [tex]60000 = \dfrac{9\times 10^9\times q}{0.09^2}[/tex]

 [tex]q = \dfrac{60000\times 0.09^2}{9\times 10^9}[/tex]

        q = 54 x 10⁻⁹ C

        q = 54 n C

the charge on the ball is equal to 54 n C

The magnitude of charge in the ball is 54 nC.

Given data:

The strength of Electric field is, E = 60,000 N/C.

The diameter of ball is, d = 10 cm = 0.1 m.

The distance is, r = 4.0 cm = 0.04 cm.

The region where the electric force has its significance is known as electric field strength. And the expression for electric field strength is given as,

[tex]E = \dfrac{kq}{(r+d/2)^{2}}[/tex]

Here, k is the Coulomb's constant and q is the magnitude of charge.

Solving as,

[tex]60,000 = \dfrac{9 \times 10^{9} \times q}{(0.04+0.1/2)^{2}}\\\\q =54 \times 10^{-9} \;\rm C\\\\q = 54 \;\rm nC[/tex]

Thus, we can conclude that the magnitude of charge in the ball is 54 nC.

Learn more about the electric field strength here:

https://brainly.com/question/15170044