Answer:
(A) Maximum voltage will be equal to 333.194 volt
(B) Current will be leading by an angle 54.70
Explanation:
We have given maximum current in the circuit [tex]i_m=385mA=385\times 10^{-3}A=0.385A[/tex]
Inductance of the inductor [tex]L=400mH=400\times 10^{-3}h=0.4H[/tex]
Capacitance [tex]C=4.43\mu F=4.43\times 10^{-3}F[/tex]
Frequency is given f = 44 Hz
Resistance R = 500 ohm
Inductive reactance will be [tex]x_l=\omega L=2\times 3.14\times 44\times 0.4=110.528ohm[/tex]
Capacitive reactance will be equal to [tex]X_C=\frac{1}{\omega C}=\frac{1}{2\times 3.14\times 44\times 4.43\times 10^{-6}}=816.82ohm[/tex]
Impedance of the circuit will be [tex]Z=\sqrt{R^2+(X_C-X_L)^2}=\sqrt{500^2+(816.92-110.52)^2}=865.44ohm[/tex]
So maximum voltage will be [tex]\Delta V_{max}=0.385\times 865.44=333.194volt[/tex]
(B) Phase difference will be given as [tex]\Phi =tan^{-1}\frac{X_C-X_L}{R}=\frac{816.92-110.52}{500}=54.70[/tex]
So current will be leading by an angle 54.70