Answer:
[tex]y(t)=0.28sin(36.02599t)[/tex]
0.0436 s
0.1308 s
Explanation:
A = Amplitude = 28 cm
m = Mass = 0.235 kg
k = Spring constant = 305 N/m
The equation which describes motion as a function of time is given by
[tex]y(t)=Asin(\omega t)[/tex]
Angular speed is given by
[tex]\omega=\sqrt{\dfrac{k}{m}}\\\Rightarrow \omega=\sqrt{\dfrac{305}{0.235}}\\\Rightarrow \omega=36.02599\ rad/s[/tex]
The equation is
[tex]\mathbf{y(t)=0.28sin(36.02599t)}[/tex]
Maximum length will be at amplitude
Amplitude is given by
[tex]A=Asin(\omega t)[/tex]
here
[tex]\omega t=\dfrac{\pi}{2}\\\Rightarrow t=\dfrac{\pi}{2\times 36.02599}\\\Rightarrow t=0.0436\ s[/tex]
The time to stretch to maximum length is 0.0436 s
At minimum length
[tex]y(t)=-A\\\Rightarrow -A=Asin\omega t[/tex]
[tex]\omega t=\dfrac{3\pi}{2}\\\Rightarrow t=\dfrac{3\pi}{2\omega}\\\Rightarrow t=\dfrac{3\pi}{2\times 36.02599}\\\Rightarrow t=0.1308\ s[/tex]
The time will the spring shrink to its minimum length at first time is 0.1308 s