A hydrogen atom emits a photon that has momentum 0.3059×10^(-27) kg·m/s. This photon is emitted because the electron in the atom falls from a higher energy level into the n = 4 level. What is the quantum number of the level from which the electron falls? Use values of h = 6.626×10^-34 J·s, c = 2.998×10^8 m/s, and e = 1.602×10^(-19) C.

Respuesta :

Answer:

The quantum number of the higher energy level is 7

Explanation:

Given:

Momentum (p) = 0.3059×10⁻²⁷ kg·m/s

Planck's constant (h) = 6.626×10⁻³⁴ J·s

Speed of light (c) = 2.998×10⁸m/s

Charge of electron (e) = 1.602×10⁻¹⁹ C

Lower energy level (n₂) = 4

Higher energy level (n₁) = ?

From Bohr's model, change in energy of a photon is given as;

[tex]\delta E= (\frac{1}{(n_2)^2} -\frac{1}{(n_1)^2})*13.6eV[/tex]

ΔE = P*C

[tex]P*C = (\frac{1}{(n_2)^2} -\frac{1}{(n_1)^2})*13.6eV[/tex]

[tex]\frac{P*C}{13.6eV} =\frac{1}{(n_2)^2} -\frac{1}{(n_1)^2}[/tex]

[tex]\frac{1}{(n_1)^2}=\frac{1}{(n_2)^2} -\frac{P*C}{13.6eV}[/tex]

[tex]\frac{1}{(n_1)^2}=\frac{1}{(4)^2} -\frac{0.3059X10^{-27}*2.998X10^8}{13.6X1.602X10^{-19}}[/tex]

[tex]\frac{1}{(n_1)^2}=\frac{1}{(16)} -\frac{0.9177}{21.7812}}[/tex]

[tex]\frac{1}{(n_1)^2}=0.0625 -0.0421[/tex]

[tex]\frac{1}{(n_1)^2}=0.0204[/tex]

[tex](n_1)^2 = \frac{1}{0.0204}[/tex]

[tex](n_1)^2 = 49.0196[/tex]

[tex]n_1 =\sqrt{49.0196}[/tex]

n₁ = 7

Therefore, the quantum number of the higher energy level is 7