Answer:
Therefore, the variable expression when a=-4, b=2, c=-3, and d =4 is
[tex]\dfrac{b-3a}{bc^{2}-d}=1[/tex]
Step-by-step explanation:
Evaluate:
[tex]\dfrac{b-3a}{bc^{2}-d}[/tex]
When a=-4, b=2, c=-3, and d =4
Solution:
Substitute, a=-4, b=2, c=-3, and d =4 in above expression we get
[tex]\dfrac{b-3a}{bc^{2}-d}=\dfrac{2-3(-4)}{2(-3)^{2}-4}\\\\=\dfrac{2+12}{18-4}\\\\[/tex]
[tex]\dfrac{b-3a}{bc^{2}-d}=\dfrac{14}{14}=1[/tex]
Therefore, the variable expression when a=-4, b=2, c=-3, and d =4 is
[tex]\dfrac{b-3a}{bc^{2}-d}=1[/tex]