The average speed is 0.517 m/s
The average velocity is 0.12 m/s west
Explanation:
When dividing the total distance covered by object by time, we get the value for average speed.
[tex]\text { speed }=\frac{\text {distance}}{\text {time}}[/tex]
Calculate the distance without consideration of motion’s direction. So, the distance walks 144 m first, and then another 89 m, so the total distance covered is
d = 144 + 89 = 233 meters
Given t = 7.5 minutes. Convert minute into seconds,
[tex]7.5 \times 60=450 \text { seconds }[/tex]
So, the average speed can be calculates as below,
[tex]\text { speed }=\frac{233}{450}=0.517 \mathrm{m} / \mathrm{s}[/tex]
When dividing the object’s displacement by time taken, we can calculate average velocity.
[tex]\text {velocity}=\frac{\text {displacement}}{\text {time}}[/tex]
In given case, the students walks 144 m west first, and then 89 m east. The displacement is the distance in a straight line between the initial and final position: therefore, in this case, the displacement is
d = 144 (west) - 89 (east) = 55 m (west)
The time taken is t = 450 s
So, the average velocity is
[tex]\text {velocity}=\frac{55}{450}=0.12 \mathrm{m} / \mathrm{s}[/tex]
And the direction is west (the same as the displacement).