the length of a rectangle is (x + 1) cm and its width is 5cm less than its length.

a) Express a square, L cm, in x.

b) Given a rectangle is 24cm, calculate the length and width of the square

Respuesta :

Answer:

a) the area of a square is in terms of x is

[tex](x+1)^2[/tex] centimeter square

b)The length of the rectangle is l = (x+1)

                                       l = 7+1 =8 cm

The width of the rectangle is w = [(x+1)-5]

                                     w = (7+1)-5 =3 cm

Step-by-step explanation:

a) the area of a square is in terms of x is

 area of square is [tex]l^{2} = (x+1)(x+1)[/tex]

                                 = [tex](x+1)^2[/tex]

b)  Given length is  l = (x+1) cm and

the width is 5 cm less than its length.

so we have take width is w = (x+1)-5 cm

Given area of triangle is  24 cm

Area of rectangle = length X width

24  =  (x+1)(x+1 -5 )

now simplification [tex]24 = (x+1)^2 - 5 (x+1)[/tex]

apply (a+b)^2 = a^2+2 a b+b^2

[tex]x^2+2 x+1-5 x-5 =24[/tex]

[tex]x^2 -3 x -4-24=0[/tex]

[tex]x^{2} -3 x -28 =0[/tex]

now find factors of 28  = 7 X 4 is  

[tex]x^{2} -7 x+4 x-28=0[/tex]

[tex]x(x-7)+4(x-7)=0[/tex]

[tex](x+4)(x-7)=0[/tex]

x = -4 and x=7

there fore you have to choose x = 7

The length of the rectangle is l = (x+1)

                                       l = 7+1 =8

The width of the rectangle is w = [(x+1)-5]

                                     w = (7+1)-5 = 3

Verification:-

Given area of rectangle  = 24 = 8 X 3

                                           24 =24

so we can not choose x=-4

we have to choose x =7 only